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Abstract—Lung-associated pathologies are anticipated to 

emerge as the predominant contributor to mortality rates by the 

year 2029, as reported by the World Health Organization 

(WHO). In light of this intensifying issue, we propose an 

innovative deep-learning framework predicated on the U-Net 

architecture aimed at enhancing lung segmentation from 

radiographic imagery. Our proposed model, designated as XR-

U-Net, augments the conventional U-Net configuration by 

integrating five encoder and decoder blocks, which significantly 

elevates segmentation accuracy to 95.7%. When assessed on a 

collection of lung X-ray images, the model substantiates its 

efficacy through critical performance metrics, including 

validation loss, Intersection over Union (IoU), and Dice 

coefficient. By reducing diagnostic duration and aiding in 

intricate medical scenarios, this model possesses considerable 

potential to assist healthcare practitioners in providing swifter 

and more precise diagnoses, ultimately addressing the 

deficiency in the availability of medical specialists. 

Keywords—Lung Segmentation, U-Net, Deep Learning, X-

ray.  

I. INTRODUCTION 

One of the most popular and reasonably priced medical 
imaging methods in the world is X-ray imaging. It is essential 
in many different types of healthcare environments, from big 
tertiary hospitals to small community clinics. In particular, 
chest X-rays are frequently used to identify lung nodules, 
pulmonary edema, and pneumonia [1]. Chest radiographs are 
a common diagnostic tool; millions of chest X-rays are taken 
annually as a result of their effectiveness and accessibility. 
Chest X-rays are important for routine medical examinations 
since they make up over one-third of all medical imaging 
procedures [2]. 

Chest X-ray lung segmentation poses a number of 
difficulties because of pathological and non-pathological 
causes. Accurate segmentation can be hampered by non-
pathological abnormalities, such as variations in lung size and 
shape depending on age, gender, or heart size. Complicating 
matters is the presence of pathological variables, such as high-
intensity opacity brought on by severe lung disorders. 
Furthermore, a portion of the lung field may be obscured by 
foreign devices such as catheters, infusion lines, or 
pacemakers, which makes segmentation much more 
challenging [3]. The majority of lung segmentation techniques 
now in use were created using CXR images of either instances 
with modest lesions or healthy subjects. In order to make sure 
lung segmentation models are reliable in a variety of clinical 

scenarios, it is imperative to assess their performance on 
increasingly difficult and complicated CXR images [4]. 

Due to advancements in computer image processing and 
the growing availability of datasets, deep learning technology 
has advanced significantly in the field of medical image 
analysis in recent years [5]. To be more precise, deep neural 
networks are utilized in semantic segmentation to categorize 
each pixel in a chest radiograph as belonging to the lung area 
or not. Better outcomes in medical diagnosis have been 
obtained by this pixel-level categorization, which has 
increased the accuracy of lung segmentation in chest X-rays 
[6]. In medical image segmentation, U-Net has become a key 
architecture, especially for chest X-rays, because of its 
capacity to generate extremely accurate segmentations [15]. 
With the help of skip connections and its encoder-decoder 
structure, it is able to preserve both high-level and low-level 
characteristics, guaranteeing a thorough comprehension of the 
context of the images. 

In this study, we improved the conventional design, which 
usually comprises four layers, by using a U-Net architecture 
with a unique quintuple-layer encoder structure. Without 
requiring picture preprocessing, this sophisticated 
arrangement enables more thorough feature extraction, greatly 
enhancing the precision and caliber of segmentation outcomes. 
Visual evaluations of the segmented pictures and important 
performance measures like accuracy, Intersection over Union 
(IoU), and the dice coefficient are used to show how 
successful this customized model is. Notably, XR-U-Net's 
stability and operating efficiency are highlighted by the 
remarkable results it gets even when trained on smaller 
datasets. 

II. RELATED WORKS 

Machine learning (ML) and deep learning (DL) have 
found widespread uses in medicine, particularly in the 
identification of conditions like brain tumors, lung nodules, 
pneumonia, and breast cancer. Deep learning, a subfield of 
machine learning, has demonstrated promise in improving 
image segmentation and classification outcomes. As a result, 
it has become a well-liked method for medical image 
processing jobs and has acquired substantial support within 
the scientific community [7].  

In order to detect tumors and lung cancer, Brahim et al. [8] 
showed the usage of a U-Net CNN for lung segmentation from 
CT scan pictures. With a high-performance Dice score of 0.95, 
the model demonstrated its ability to separate lung regions 



appropriately. For segmenting pulmonary parenchyma from 
CT images, Chen Zhou et al. [9] created an automated 
segmentation model that combines a spatial transform 
network (STN) and a 3D V-Net. The model assists 
radiologists in diagnosing COVID-19 by evaluating texture 
and data from the segmented areas, enhancing the accuracy 
and efficacy of the diagnostic process. 

Gaal et al. [10] introduced a novel deep-learning method 
for lung segmentation by fusing a fully convolutional neural 
network with an adversarial critic model. The remarkable 
average Dice Coefficient (DC) value of 0.975 on the JSRT 
dataset confirms the remarkable accuracy of the lung area 
separation approach they employed. This approach 
demonstrates using adversarial models to improve medical 

photo segmentation. 

In order to segment the lung areas using an encoder 
decoder based Fully Convolutional Network (FCN), Rashid 
et al. [11] used post-processing techniques such as the flood-
fill algorithm, unwanted item removal, and morphological 
alterations. Using their method, the JSRT, MC, and a private 
dataset produced segmentation accuracies of 0.971, 0.977, 
and 0.942, respectively. It's interesting to note that every 
model that has been released can differentiate between non-
lung and lung parts by independently acquiring image 
characteristics. 

Feidao Cao [12] improved the feature extraction 
capabilities of the network by adding a variational 
autoencoder (VAE) to each encoder-decoder layer in the 
classic U-Net design. Utilizing both the NIH and JSRT 
datasets for training and testing, the adjusted network 
produced accuracy values of 0.9701 and F1 scores of 0.9334 
on the former, and accuracy values of 0.9750 and F1 scores of 
0.9578 on the latter. This indicates how well the VAE 
integration improves segmentation performance. 

Ngo et al. [13] developed a hybrid methodology that 
blends deep structured inference with distance regularized 
level set approaches to present a unique way for lung 
segmentation in chest X-rays (CXR). On the JSRT dataset, 
their technique yielded a remarkable average accuracy 
ranging from 94.8% to 98.5%. This novel method shows how 
better segmentation accuracy might be achieved in 
applications involving medical imaging. 

A deep learning architecture is described by Rahman et al. 
[14] with the goal of improving the accuracy of lung region 
segmentation in Chest X-ray (CXR) images. Using a "divide 
and conquer" strategy, they segment each of the smaller 
picture patches that made up the original CXRs before putting 
them back together to achieve full segmentation. This method 
combines a modified U-Net architecture for segmentation 
with a standard Convolutional Neural Network (CNN) for 
patch classification to yield superior pre-segmented photos 
through the integration of both models. 

Liu et al. [15] describe a dependable and accurate 
automated lung segmentation method using the U-Net 
architecture. Their proposed solution adds residual blocks and 
Leaky ReLU activation functions to an already-trained 
EfficientNet-B4 encoder, thereby improving the decoder's 
performance. Their method produces impressive results: on 
the JSRT and MC datasets, their Jaccard Index scores are 95.8% 
and 95.5%, respectively. 

In order to improve the U-Net model for dense pancreatic 
segmentation from CT images, Ozan Oktay et al. [16] 
included attention gates. By efficiently suppressing 
unnecessary portions within the pictures, these attention 
coefficients increase the focus and capacity of the model 
without the need for additional modules. By focusing on the 
CT scan areas that are most pertinent, this method maximizes 
segmentation. 

Olaf Ronneberger et al. [17] introduced the U-Net 
segmentation model. It was trained by assigning a class label 
to every pixel for three biological activities. To enhance the 
segmentation accuracy, the training images underwent elastic 
deformations. The model's skip connections combine local 
data and up-sampled feature maps to guarantee more precise 
segmentations and improve the localization process overall. 
Applying the U-Net design, Rehman et al. [18] were able to 
get a mean Intersection over Union (mean IoU) score of 92.82% 
while creating lung segmentations from X-ray images. This 
shows that U-Net is a dependable technique for lung image 
processing in medical diagnostics by effectively segmenting 
lung areas from chest radiographs. 

Even though lung segmentation techniques have advanced 
significantly, the majority of current methods struggle to 
handle complicated chest X-rays with overlapping structures, 
severe disease changes, and foreign objects. Furthermore, 
even if U-Net and its variations have demonstrated impressive 
potential, feature extraction and segmentation accuracy can 
still be enhanced, especially when dealing with smaller or 
more varied datasets. In order to improve feature extraction 
without preprocessing and guarantee excellent segmentation 
accuracy and resilience across a range of clinical settings, this 
work presents a unique U-Net architecture with a quintuple-
layer encoder structure. Our suggested method seeks to close 
these gaps and establish a new standard for lung segmentation 
from chest X-rays. 

III. MATERIALS AND METHOD 

A. Experimental Design 

In order to optimize computational capabilities for our 
endeavors, we have opted for the Kaggle environment, which 
employs a GPU P-100 equipped with 64GB of RAM in a 
cloud infrastructure, supplemented by CPU resources as a 
contingency. Fig. 1 shows the workflow diagram for lung 
image segmentation using the XR-U-Net model. This 
flowchart describes the sequential steps involved in the 
model's operation, from input data collecting to final output 
development. 

The procedure's initiation starts with the collection of the 
dataset. Following that, the lung CXR pictures and their 
corresponding masks are divided into three distinct subsets: 
the test set, the validation set, and the training set. This 
partitioning ensures a thorough training program and makes 
accurate model evaluation easier. During the training and 
validation phase, the model acquires the capability to segment 
the lung regions proficiently, utilizing the supplied input data. 
Upon completion of the model training, the test subsets of both 
masks and lung CXR images are subjected to the trained XR-
U-Net model. This process culminates in the generation of the 
final output, comprising segmented masks that accurately 
depict the lung regions. 



 

Fig. 1. Workflow diagram of lung image segmentation using XR-U-Net. 

B. Dataset 

The X-ray pictures included in this data set were obtained 
from the Department of Health and Human Services' 
tuberculosis control program in Montgomery County, 
Maryland, USA [19]. There are 138 posterior-anterior X-rays 
in this collection; 80 of them are normal, while the remaining 
58 show abnormalities consistent with tuberculosis. All 
photos are in DICOM format and have been de-identified. 
The set includes several different anomalies such as miliary 

patterns and effusions. Fig. 2 shows sample photos from this 
dataset.  

   

Fig. 2. Sample images from the dataset.  

Three distinct subsets of the dataset—training, validation, 
and testing—were randomly selected. The training subset 
comprised 112 images, the validation subset encompassed 13 
images, while the residual 13 images were designated for the 
testing subset. 

C. Maintaining the Integrity of the Specifications 

This section presents a unique deep learning-based lung 
segmentation method using the XR-U-Net architecture on 
chest X-ray (CXR) images. The sections that follow provide 
specifics about the dataset that was used to train the model. 
Fig. 3 shows the architecture of the suggested model. Each of 
the five blocks that make up the XR-U-Net encoder is in 
charge of converting the input data into feature 
representations. Every encoder block consists of a max 
pooling layer after a Conv_Block. Two convolutional layers, 
batch normalization, and ReLU activation make up the 
Conv_Block.  

 

Fig. 3. System architecture of XR-U-Net.  

The max pool is defined by the equation (1), 
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Where ��
�,�  is the layer L feature map with its i-pixel 

position, C channel dimensions, and feature activations that 
can be expressed using the format provided by equation (2). 
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where ��  is the feature map at layer L and ∗ is the 

convolution operation. 

Following the encoding phase, the dimensions of the 
features are shrunk to 16x16x1024. The decoding stage comes 
next, with another Conv_Block added at this point. Five 
blocks make up the decoder, and they all use the 
Conv2DTranspose operation. 



D. Training 

We introduced an innovative segmentation architecture, 
referred to as XR-U-Net, which produces outputs that 
differentiate lung regions from non-lung regions. The Adam 
optimizer was utilized to optimize the model, with a learning 
rate of 1×10−6, with batch size 2. The training process 
continued for 100 epochs. The optimizer equation (3) is given 
below: 

�� =  ���� � �  ! "
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where w speaks to the weight, η is the learning rate, and 
epsilon may be a little constant presented to anticipate division 
by zero. This detailing permits Adam to adaptively alter the 
learning rate for each parameter based on the gauges of to 
begin with and moment minutes of the angles, coming about 
in progressed meetings and execution amid the preparing 
prepare. 

With this setup, the model was able to be trained and 
validated on the Montgomery County X-ray dataset quickly 
and effectively. When analyzing the training graph illustrated 
in Fig.  4 and Fig. 5, where only improved training values are 
included. It becomes evident that the XR-U-Net model has 
performed exceptionally well.  This is particularly clear from 
the Dice coefficient and the Intersection over Union (IoU) 
values, both of the curve approaches towards 1, indicating a 
high degree of accuracy in the segmentation. 

 

Fig. 4. Training graph, the left side presents the training vs validation loss 
curve and the right side presents the training vs validation precision graph.  

 

Fig. 5. Training graph, the left side presents the training vs validation dice 
coefficient curve and the right side presents the training vs validation IoU 
graph.  

The formula to calculate IoU is illustrated in equation (4) 
and the formula for the dice coefficient is shown in equation 
(5). 
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The lung parenchyma area, S, is determined by the 
suggested model, while T represents the ground truth that is 

achieved through manual segmentation. 

9:; = 2 ∗ ||>∩?|| 
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Where Area of Intersection = Common area shared by the 
two masks  

Area of Union = Total area covered by the two masks 

Furthermore, the validation loss shows a steady decline, 
indicating that the model is robust in precisely segmenting 
lung areas and that it can generalize well to new data. 

IV. RESULTS AND DISCUSSION 

The XR-U-Net architecture elucidated in this investigation 
proficiently generated masks for the inputted lung 
radiographic images, attaining a remarkable accuracy rate of 
95.7%. Throughout the training epoch, the model exhibited 
significant performance metrics, achieving a precision of 
98.74%, an Intersection over Union (IoU) score of 0.83, and a 
Dice score of 0.91. In the validation phase, the model similarly 
demonstrated robust outcomes, with a precision of 95.73%, an 
IoU score of 0.79, and a Dice score of 0.88. The masks 
produced distinctly delineate the pulmonary regions in a 
monochromatic black shade, while the non-pulmonary areas 
are represented in an understated gray, thereby augmenting the 
clarity of the differentiation between the two regions. This 
discernment serves as an affirmation of the model's adeptness 
in precisely identifying the anatomical structures of the lungs 
with exceptional accuracy. 

A number of models have been compared with our 
proposed XR-U-Net illustrates in Table 1. The Fully 
Convolutional Neural Network (FCNN) developed by Kumar 
et al. [20] attains a commendable accuracy of 97%; however, 
the omission of reported Intersection over Union (IoU) and 
Dice Coefficient metrics renders the model's segmentation 
efficacy ambiguous. Likewise, the assessment conducted by 
Boodi et al. [21], which utilized a U-Net architecture in 
conjunction with a bespoke dataset, raises issues regarding 
comprehensiveness, as they document a high Dice Coefficient 
(95%) while failing to delineate the IoU, a pivotal metric for 
evaluating segmentation capability. The convolutional neural 
network-based methodology presented by Pasa et al. [22] 
exhibits a relatively subpar accuracy of 86.6%, highlighting 
its inadequacies in effectively addressing segmentation tasks. 

Conversely, Mique et al. [23] harnessed a Deep Residual 
U-Net, attaining an extraordinary Dice Coefficient of 98.6% 
within a mere 40 epochs. Nonetheless, such expedited 
convergence may suggest a propensity for overfitting 
attributable to insufficient training. Utilizing the identical 
dataset as this investigation, Gite et al. [24] implemented U-
Net++, achieving enhanced accuracy of 98% and a Dice 
Coefficient of 97.96%. However, this improvement is 
accompanied by a substantial increase in model complexity, 
resulting in prolonged execution times and elevated 
computational requirements, thereby constraining its 
applicability in practical scenarios. In contrast, the proposed 
XR-U-Net achieves an equilibrium between performance and 
efficiency, providing a competitive accuracy of 95.7% and a 
Dice Coefficient of 91% with streamlined execution and 
diminished computational overhead, rendering it more 
conducive for practical deployment. 

The XR-U-Net model proposed herein successfully 
generated masks for the input lung X-ray images. These masks 
delineate the lung regions in black while representing the non-
lung areas in gray, thereby facilitating a clear differentiation 
between the two areas.  This differentiation exemplifies that 
the model has effectively developed the capability to identify 
the anatomical configuration of the lungs. The masks 
produced by the model, which distinctly segment the lung 
regions, are illustrated in Fig. 6.  



TABLE I.  COMPARISON OF SEGMENTATION PERFORMANCE METRICS ACROSS VARIOUS MODELS 

Reference Method Dataset Epoch IoU Dice Accuracy 

Kumar et al. [20] FCNN JSRT 50 Not specified Not specified 97% 

Boodi et al. [21] U-Net Custom Not specified Not specified 95% 98% 

Pasa et al. [22] CNN Custom Not specified Not specified Not specified 86.6 % 

Mique et al. [23] Deep Residual U-Net Not specified 40 Not specified 98.60 % Not specified 

Gite et al. [24] U-Net++ Montgomery County X-ray Set Not specified 0.95 97.96 % 98 % 

Proposed XR-U-Net Montgomery County X-ray Set 100 0.83 91 % 95.7 % 

Despite potential noise or distortions present in the X-ray 
images, the masks maintain a clear and consistent distinction 
between the lung regions and the surrounding tissues, thereby 
indicating the model's proficiency in detecting lung 
parenchyma. 

 

      (a)         (b)          (c) 

Fig. 6. Lung CXR images a) input image b) ground truth segment, and c) 
predicted segment 

The XR-U-Net model produced augmented visual outputs 
alongside mask outputs, facilitating a more straightforward 
comparison between the projected lung borders and the 
ground truth segmentations. The definitive lung boundaries 
are represented by a red border, whereas the predicted lung 
segments are highlighted with a blue border. The capacity to 
directly juxtapose these color-coded representations 
elucidates the accuracy of the algorithm in forecasting lung 
edges. Illustrations of these bordered outputs are presented in 
Fig. 7. The lung regions predicted by the model are 
represented by the blue borders, whereas the ground truth 
annotations are illustrated by the red borders. The significant 
overlap between the two, as evidenced in the images, 
showcases the model's remarkable proficiency in accurately 
segmenting the lung regions. Although certain intricate 
structures exhibited minor discrepancies, overall. 

 

   

Fig. 7.  Examples of segmentation results. The red border indicates the 
ground truth whereas the green border indicates our prediction masks. 

Although the XR-U-Net model demonstrates encouraging 
outcomes, a critical limitation of this inquiry is the 
inadequacy of sufficiently comprehensive and varied 
datasets, which are essential for enhancing the model's 
resilience and applicability. In subsequent investigations, 
scholars ought to delve into three-dimensional image 
segmentation methodologies, which may yield a more 
holistic comprehension of pulmonary anatomy. Furthermore, 

the amalgamation of this methodology with effective lung 
cancer detection frameworks possesses considerable promise 
for enhancing early diagnostic procedures and treatment 
efficacy. 

V. CONCLUSION  

The XR-U-Net model attains a commendable accuracy 
rate of 95.7%, a Dice coefficient of 91%, and an Intersection 
over Union (IoU) of 0.83 in the segmentation of lung 
structures from chest X-ray images. Its innovative quintuple-
layer encoder-decoder architecture proficiently manages 
intricate lung anatomies and associated pathologies, thereby 
providing a computationally efficient framework suitable for 
clinical utilization. Upon evaluation using the Montgomery 
County X-ray dataset, the model reliably delineates 
pulmonary regions, thereby facilitating precise and expedient 
diagnostic outcomes. 

Despite its promising capabilities, the generalizability of 
the model would be enhanced through the incorporation of 
larger and more heterogeneous datasets. Subsequent 
investigations should prioritize the exploration of three-
dimensional segmentation techniques as well as their 
integration with diagnostic frameworks to augment the early 
detection of pulmonary diseases. The XR-U-Net model 
exhibits substantial potential for optimizing diagnostic 
workflows and improving patient outcomes in response to the 
escalating prevalence of lung-related pathologies. 
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