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Abstract—Lung-associated pathologies are anticipated to
emerge as the predominant contributor to mortality rates by the
year 2029, as reported by the World Health Organization
(WHO). In light of this intensifying issue, we propose an
innovative deep-learning framework predicated on the U-Net
architecture aimed at enhancing lung segmentation from
radiographic imagery. Our proposed model, designated as XR-
U-Net, augments the conventional U-Net configuration by
integrating five encoder and decoder blocks, which significantly
elevates segmentation accuracy to 95.7%. When assessed on a
collection of lung X-ray images, the model substantiates its
efficacy through critical performance metrics, including
validation loss, Intersection over Union (IoU), and Dice
coefficient. By reducing diagnostic duration and aiding in
intricate medical scenarios, this model possesses considerable
potential to assist healthcare practitioners in providing swifter
and more precise diagnoses, ultimately addressing the
deficiency in the availability of medical specialists.

Keywords—Lung Segmentation, U-Net, Deep Learning, X-
ray.

1. INTRODUCTION

One of the most popular and reasonably priced medical
imaging methods in the world is X-ray imaging. It is essential
in many different types of healthcare environments, from big
tertiary hospitals to small community clinics. In particular,
chest X-rays are frequently used to identify lung nodules,
pulmonary edema, and pneumonia [1]. Chest radiographs are
a common diagnostic tool; millions of chest X-rays are taken
annually as a result of their effectiveness and accessibility.
Chest X-rays are important for routine medical examinations
since they make up over one-third of all medical imaging
procedures [2].

Chest X-ray lung segmentation poses a number of
difficulties because of pathological and non-pathological
causes. Accurate segmentation can be hampered by non-
pathological abnormalities, such as variations in lung size and
shape depending on age, gender, or heart size. Complicating
matters is the presence of pathological variables, such as high-
intensity opacity brought on by severe lung disorders.
Furthermore, a portion of the lung field may be obscured by
foreign devices such as catheters, infusion lines, or
pacemakers, which makes segmentation much more
challenging [3]. The majority of lung segmentation techniques
now in use were created using CXR images of either instances
with modest lesions or healthy subjects. In order to make sure
lung segmentation models are reliable in a variety of clinical
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scenarios, it is imperative to assess their performance on
increasingly difficult and complicated CXR images [4].

Due to advancements in computer image processing and
the growing availability of datasets, deep learning technology
has advanced significantly in the field of medical image
analysis in recent years [5]. To be more precise, deep neural
networks are utilized in semantic segmentation to categorize
each pixel in a chest radiograph as belonging to the lung area
or not. Better outcomes in medical diagnosis have been
obtained by this pixel-level categorization, which has
increased the accuracy of lung segmentation in chest X-rays
[6]. In medical image segmentation, U-Net has become a key
architecture, especially for chest X-rays, because of its
capacity to generate extremely accurate segmentations [15].
With the help of skip connections and its encoder-decoder
structure, it is able to preserve both high-level and low-level
characteristics, guaranteeing a thorough comprehension of the
context of the images.

In this study, we improved the conventional design, which
usually comprises four layers, by using a U-Net architecture
with a unique quintuple-layer encoder structure. Without
requiring picture  preprocessing, this  sophisticated
arrangement enables more thorough feature extraction, greatly
enhancing the precision and caliber of segmentation outcomes.
Visual evaluations of the segmented pictures and important
performance measures like accuracy, Intersection over Union
(IoU), and the dice coefficient are used to show how
successful this customized model is. Notably, XR-U-Net's
stability and operating efficiency are highlighted by the
remarkable results it gets even when trained on smaller
datasets.

II. RELATED WORKS

Machine learning (ML) and deep learning (DL) have
found widespread uses in medicine, particularly in the
identification of conditions like brain tumors, lung nodules,
pneumonia, and breast cancer. Deep learning, a subfield of
machine learning, has demonstrated promise in improving
image segmentation and classification outcomes. As a result,
it has become a well-liked method for medical image
processing jobs and has acquired substantial support within
the scientific community [7].

In order to detect tumors and lung cancer, Brahim et al. [8]
showed the usage of a U-Net CNN for lung segmentation from
CT scan pictures. With a high-performance Dice score of 0.95,
the model demonstrated its ability to separate lung regions



appropriately. For segmenting pulmonary parenchyma from
CT images, Chen Zhou et al. [9] created an automated
segmentation model that combines a spatial transform
network (STN) and a 3D V-Net. The model assists
radiologists in diagnosing COVID-19 by evaluating texture
and data from the segmented areas, enhancing the accuracy
and efficacy of the diagnostic process.

Gaal et al. [10] introduced a novel deep-learning method
for lung segmentation by fusing a fully convolutional neural
network with an adversarial critic model. The remarkable
average Dice Coefficient (DC) value of 0.975 on the JSRT
dataset confirms the remarkable accuracy of the lung area
separation approach they employed. This approach
demonstrates using adversarial models to improve medical

photo segmentation.

In order to segment the lung areas using an encoder
decoder based Fully Convolutional Network (FCN), Rashid
et al. [11] used post-processing techniques such as the flood-
fill algorithm, unwanted item removal, and morphological
alterations. Using their method, the JSRT, MC, and a private
dataset produced segmentation accuracies of 0.971, 0.977,
and 0.942, respectively. It's interesting to note that every
model that has been released can differentiate between non-
lung and lung parts by independently acquiring image
characteristics.

Feidao Cao [12] improved the feature extraction
capabilities of the network by adding a variational
autoencoder (VAE) to each encoder-decoder layer in the
classic U-Net design. Utilizing both the NIH and JSRT
datasets for training and testing, the adjusted network
produced accuracy values of 0.9701 and F1 scores of 0.9334
on the former, and accuracy values of 0.9750 and F1 scores of
0.9578 on the latter. This indicates how well the VAE
integration improves segmentation performance.

Ngo et al. [13] developed a hybrid methodology that
blends deep structured inference with distance regularized
level set approaches to present a unique way for lung
segmentation in chest X-rays (CXR). On the JSRT dataset,
their technique yielded a remarkable average accuracy
ranging from 94.8% to 98.5%. This novel method shows how
better segmentation accuracy might be achieved in
applications involving medical imaging.

A deep learning architecture is described by Rahman et al.
[14] with the goal of improving the accuracy of lung region
segmentation in Chest X-ray (CXR) images. Using a "divide
and conquer" strategy, they segment each of the smaller
picture patches that made up the original CXRs before putting
them back together to achieve full segmentation. This method
combines a modified U-Net architecture for segmentation
with a standard Convolutional Neural Network (CNN) for
patch classification to yield superior pre-segmented photos
through the integration of both models.

Liu et al. [15] describe a dependable and accurate
automated lung segmentation method using the U-Net
architecture. Their proposed solution adds residual blocks and
Leaky ReLU activation functions to an already-trained
EfficientNet-B4 encoder, thereby improving the decoder's
performance. Their method produces impressive results: on

the JSRT and MC datasets, their Jaccard Index scores are 95.8%

and 95.5%, respectively.

In order to improve the U-Net model for dense pancreatic
segmentation from CT images, Ozan Oktay et al. [16]
included attention gates. By efficiently suppressing
unnecessary portions within the pictures, these attention
coefficients increase the focus and capacity of the model
without the need for additional modules. By focusing on the
CT scan areas that are most pertinent, this method maximizes
segmentation.

Olaf Ronneberger et al. [17] introduced the U-Net
segmentation model. It was trained by assigning a class label
to every pixel for three biological activities. To enhance the
segmentation accuracy, the training images underwent elastic
deformations. The model's skip connections combine local
data and up-sampled feature maps to guarantee more precise
segmentations and improve the localization process overall.
Applying the U-Net design, Rehman et al. [18] were able to
get a mean Intersection over Union (mean IoU) score of 92.82%
while creating lung segmentations from X-ray images. This
shows that U-Net is a dependable technique for lung image
processing in medical diagnostics by effectively segmenting
lung areas from chest radiographs.

Even though lung segmentation techniques have advanced
significantly, the majority of current methods struggle to
handle complicated chest X-rays with overlapping structures,
severe disease changes, and foreign objects. Furthermore,
even if U-Net and its variations have demonstrated impressive
potential, feature extraction and segmentation accuracy can
still be enhanced, especially when dealing with smaller or
more varied datasets. In order to improve feature extraction
without preprocessing and guarantee excellent segmentation
accuracy and resilience across a range of clinical settings, this
work presents a unique U-Net architecture with a quintuple-
layer encoder structure. Our suggested method seeks to close
these gaps and establish a new standard for lung segmentation
from chest X-rays.

III. MATERIALS AND METHOD

A. Experimental Design

In order to optimize computational capabilities for our
endeavors, we have opted for the Kaggle environment, which
employs a GPU P-100 equipped with 64GB of RAM in a
cloud infrastructure, supplemented by CPU resources as a
contingency. Fig. 1 shows the workflow diagram for lung
image segmentation using the XR-U-Net model. This
flowchart describes the sequential steps involved in the
model's operation, from input data collecting to final output
development.

The procedure's initiation starts with the collection of the
dataset. Following that, the lung CXR pictures and their
corresponding masks are divided into three distinct subsets:
the test set, the validation set, and the training set. This
partitioning ensures a thorough training program and makes
accurate model evaluation easier. During the training and
validation phase, the model acquires the capability to segment
the lung regions proficiently, utilizing the supplied input data.
Upon completion of the model training, the test subsets of both
masks and lung CXR images are subjected to the trained XR-
U-Net model. This process culminates in the generation of the
final output, comprising segmented masks that accurately
depict the lung regions.
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Fig. . Workflow diagram of lung image segmentation using XR-U-Net.

B. Dataset

The X-ray pictures included in this data set were obtained
from the Department of Health and Human Services'
tuberculosis control program in Montgomery County,
Maryland, USA [19]. There are 138 posterior-anterior X-rays
in this collection; 80 of them are normal, while the remaining
58 show abnormalities consistent with tuberculosis. All
photos are in DICOM format and have been de-identified.
The set includes several different anomalies such as miliary
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patterns and effusions. Fig. 2 shows sample photos from this
dataset.

Fig. 2. Sample images from the dataset.

Three distinct subsets of the dataset—training, validation,
and testing—were randomly selected. The training subset
comprised 112 images, the validation subset encompassed 13
images, while the residual 13 images were designated for the
testing subset.

C. Maintaining the Integrity of the Specifications

This section presents a unique deep learning-based lung
segmentation method using the XR-U-Net architecture on
chest X-ray (CXR) images. The sections that follow provide
specifics about the dataset that was used to train the model.
Fig. 3 shows the architecture of the suggested model. Each of
the five blocks that make up the XR-U-Net encoder is in
charge of converting the input data into feature
representations. Every encoder block consists of a max
pooling layer after a Conv_Block. Two convolutional layers,
batch normalization, and ReLU activation make up the
Conv_Block.
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Fig. 3. System architecture of XR-U-Net.

The max pool is defined by the equation (1),

o1(x") = max(0, xf, (1)
Where x*; . is the layer L feature map with its i-pixel
position, C channel dimensions, and feature activations that
can be expressed using the format provided by equation (2).

xcl" = al(ZC’EFL xcl:’_l * kc',c) (2)

where F; is the feature map at layer L and * is the
convolution operation.

Following the encoding phase, the dimensions of the
features are shrunk to 16x16x1024. The decoding stage comes
next, with another Conv_Block added at this point. Five
blocks make up the decoder, and they all use the
Conv2DTranspose operation.



D. Training

We introduced an innovative segmentation architecture,
referred to as XR-U-Net, which produces outputs that
differentiate lung regions from non-lung regions. The Adam
optimizer was utilized to optimize the model, with a learning
rate of 1x107%, with batch size 2. The training process
continued for 100 epochs. The optimizer equation (3) is given
below:

We = We1 — U% 3)

where w speaks to the weight, 1 is the learning rate, and
epsilon may be a little constant presented to anticipate division
by zero. This detailing permits Adam to adaptively alter the
learning rate for each parameter based on the gauges of to
begin with and moment minutes of the angles, coming about
in progressed meetings and execution amid the preparing
prepare.

With this setup, the model was able to be trained and
validated on the Montgomery County X-ray dataset quickly
and effectively. When analyzing the training graph illustrated
in Fig. 4 and Fig. 5, where only improved training values are
included. It becomes evident that the XR-U-Net model has
performed exceptionally well. This is particularly clear from
the Dice coefficient and the Intersection over Union (IoU)
values, both of the curve approaches towards 1, indicating a
high degree of accuracy in the segmentation.

Fig. 4. Training graph, the left side presents the training vs validation loss
curve and the right side presents the training vs validation precision graph.

Training vs Validation Dice Coefficient Training vs Validation ol

o e e

B e ARt © Widution s R
. oy T e e
W’*’ v :?.} -

Fig. 5. Training graph, the left side presents the training vs validation dice
coefficient curve and the right side presents the training vs validation IoU
graph.

The formula to calculate IoU is illustrated in equation (4)
and the formula for the dice coefficient is shown in equation
5.

IoU = Area of Iterse.ction(AnB) (4)
Area of Union(AUB)

The lung parenchyma area, S, is determined by the

suggested model, while T represents the ground truth that is

achieved through manual segmentation.

_ [|SNT||
dsc =2 SeT ()

Where Area of Intersection = Common area shared by the
two masks

Area of Union = Total area covered by the two masks

Furthermore, the validation loss shows a steady decline,
indicating that the model is robust in precisely segmenting
lung areas and that it can generalize well to new data.

IV. RESULTS AND DISCUSSION

The XR-U-Net architecture elucidated in this investigation
proficiently generated masks for the inputted lung
radiographic images, attaining a remarkable accuracy rate of
95.7%. Throughout the training epoch, the model exhibited
significant performance metrics, achieving a precision of
98.74%, an Intersection over Union (IoU) score of 0.83, and a
Dice score 0f 0.91. In the validation phase, the model similarly
demonstrated robust outcomes, with a precision of 95.73%, an
IoU score of 0.79, and a Dice score of 0.88. The masks
produced distinctly delineate the pulmonary regions in a
monochromatic black shade, while the non-pulmonary areas
are represented in an understated gray, thereby augmenting the
clarity of the differentiation between the two regions. This
discernment serves as an affirmation of the model's adeptness
in precisely identifying the anatomical structures of the lungs
with exceptional accuracy.

A number of models have been compared with our
proposed XR-U-Net illustrates in Table 1. The Fully
Convolutional Neural Network (FCNN) developed by Kumar
et al. [20] attains a commendable accuracy of 97%; however,
the omission of reported Intersection over Union (IoU) and
Dice Coefficient metrics renders the model's segmentation
efficacy ambiguous. Likewise, the assessment conducted by
Boodi et al. [21], which utilized a U-Net architecture in
conjunction with a bespoke dataset, raises issues regarding
comprehensiveness, as they document a high Dice Coefficient
(95%) while failing to delineate the IoU, a pivotal metric for
evaluating segmentation capability. The convolutional neural
network-based methodology presented by Pasa et al. [22]
exhibits a relatively subpar accuracy of 86.6%, highlighting
its inadequacies in effectively addressing segmentation tasks.

Conversely, Mique et al. [23] harnessed a Deep Residual
U-Net, attaining an extraordinary Dice Coefficient of 98.6%
within a mere 40 epochs. Nonetheless, such expedited
convergence may suggest a propensity for overfitting
attributable to insufficient training. Utilizing the identical
dataset as this investigation, Gite et al. [24] implemented U-
Net++, achieving enhanced accuracy of 98% and a Dice
Coefficient of 97.96%. However, this improvement is
accompanied by a substantial increase in model complexity,
resulting in prolonged execution times and elevated
computational requirements, thereby constraining its
applicability in practical scenarios. In contrast, the proposed
XR-U-Net achieves an equilibrium between performance and
efficiency, providing a competitive accuracy of 95.7% and a
Dice Coefficient of 91% with streamlined execution and
diminished computational overhead, rendering it more
conducive for practical deployment.

The XR-U-Net model proposed herein successfully
generated masks for the input lung X-ray images. These masks
delineate the lung regions in black while representing the non-
lung areas in gray, thereby facilitating a clear differentiation
between the two areas. This differentiation exemplifies that
the model has effectively developed the capability to identify
the anatomical configuration of the lungs. The masks
produced by the model, which distinctly segment the lung
regions, are illustrated in Fig. 6.



TABLE L COMPARISON OF SEGMENTATION PERFORMANCE METRICS ACROSS VARIOUS MODELS
Reference Method Dataset Epoch IoU Dice Accuracy

Kumar et al. [20] FCNN JSRT 50 Not specified Not specified 97%
Boodi et al. [21] U-Net Custom Not specified | Not specified 95% 98%
Pasa et al. [22] CNN Custom Not specified | Not specified | Not specified 86.6 %
Mique et al. [23] Deep Residual U-Net Not specified 40 Not specified 98.60 % Not specified
Gite et al. [24] U-Net++ Montgomery County X-ray Set Not specified 0.95 97.96 % 98 %
Proposed XR-U-Net Montgomery County X-ray Set 100 0.83 91 % 95.7 %

Despite potential noise or distortions present in the X-ray
images, the masks maintain a clear and consistent distinction
between the lung regions and the surrounding tissues, thereby
indicating the model's proficiency
parenchyma.

in detecting lung

(2) (®) ©
Fig. 6. Lung CXR images a) input image b) ground truth segment, and c)
predicted segment

The XR-U-Net model produced augmented visual outputs
alongside mask outputs, facilitating a more straightforward
comparison between the projected lung borders and the
ground truth segmentations. The definitive lung boundaries
are represented by a red border, whereas the predicted lung
segments are highlighted with a blue border. The capacity to
directly juxtapose these color-coded representations
elucidates the accuracy of the algorithm in forecasting lung
edges. Illustrations of these bordered outputs are presented in
Fig. 7. The lung regions predicted by the model are
represented by the blue borders, whereas the ground truth
annotations are illustrated by the red borders. The significant
overlap between the two, as evidenced in the images,
showcases the model's remarkable proficiency in accurately
segmenting the lung regions. Although certain intricate
structures exhibited minor discrepancies, overall.

Fig. 7.
ground truth whereas the green border indicates our prediction masks.

Examples of segmentation results. The red border indicates the

Although the XR-U-Net model demonstrates encouraging
outcomes, a critical limitation of this inquiry is the
inadequacy of sufficiently comprehensive and varied
datasets, which are essential for enhancing the model's
resilience and applicability. In subsequent investigations,
scholars ought to delve into three-dimensional image
segmentation methodologies, which may yield a more
holistic comprehension of pulmonary anatomy. Furthermore,

the amalgamation of this methodology with effective lung
cancer detection frameworks possesses considerable promise
for enhancing early diagnostic procedures and treatment
efficacy.

V. CONCLUSION

The XR-U-Net model attains a commendable accuracy
rate of 95.7%, a Dice coefficient of 91%, and an Intersection
over Union (IoU) of 0.83 in the segmentation of lung
structures from chest X-ray images. Its innovative quintuple-
layer encoder-decoder architecture proficiently manages
intricate lung anatomies and associated pathologies, thereby
providing a computationally efficient framework suitable for
clinical utilization. Upon evaluation using the Montgomery
County X-ray dataset, the model reliably delineates
pulmonary regions, thereby facilitating precise and expedient
diagnostic outcomes.

Despite its promising capabilities, the generalizability of
the model would be enhanced through the incorporation of
larger and more heterogeneous datasets. Subsequent
investigations should prioritize the exploration of three-
dimensional segmentation techniques as well as their
integration with diagnostic frameworks to augment the early
detection of pulmonary diseases. The XR-U-Net model
exhibits substantial potential for optimizing diagnostic
workflows and improving patient outcomes in response to the
escalating prevalence of lung-related pathologies.
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